161 research outputs found

    Evaporative cooling in a radio-frequency trap

    Get PDF
    A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.Comment: 12 pages, 11 figure

    Quantum noise limited interferometric measurement of atomic noise: towards spin squeezing on the Cs clock transition

    Full text link
    We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser cooled and trapped atoms. This study is a step towards generation of (pseudo-) spin squeezing of cold atoms targeted at the improvement of the Caesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near resonant optical probe pulse propagating through a cloud of cold 133Cs atoms. We analyze the figure of merit for a quantum non-demolition (QND) measurement of the collective pseudo-spin and show that it can be expressed simply as a product of the ensemble optical density and the pulse integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach the sensitivity of the order of N_at^1/2 in a cloud of N_at cold atoms, which is an important benchmark towards the experimental realisation of the theoretically analyzed protocol.Comment: 12 pages and 9 figures, accepted to Physical Review

    Non-destructive interferometric characterization of an optical dipole trap

    Get PDF
    A method for non-destructive characterization of a dipole trapped atomic sample is presented. It relies on a measurement of the phase-shift imposed by cold atoms on an optical pulse that propagates through a free space Mach-Zehnder interferometer. Using this technique we are able to determine, with very good accuracy, relevant trap parameters such as the atomic sample temperature, trap oscillation frequencies and loss rates. Another important feature is that our method is faster than conventional absorption or fluorescence techniques, allowing the combination of high-dynamical range measurements and a reduced number of spontaneous emission events per atom.Comment: 9 pages, 6 figures, submitted to PR

    Continuous Cold-atom Inertial Sensor with 1 nrad.s−11\ \text{nrad.s}^{-1} Rotation Stability

    Full text link
    We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of AIs, and demonstrate a rotation sensitivity of 100 nrad.s−1.Hz−1/2100\ \text{nrad.s}^{-1}.\text{Hz}^{-1/2} in a cold-atom gyroscope of 11 cm211 \ \text{cm}^2 Sagnac area. We also demonstrate a rotation stability of 1 nrad.s−11 \ \text{nrad.s}^{-1} at 10410^4 s of integration time, which establishes the record for atomic gyroscopes. The continuous operation of cold-atom inertial sensors will enable to benefit from the full sensitivity potential of large area AIs, determined by the quantum noise limit.Comment: 4 pages, 3 figure

    Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications

    Full text link
    Developments in atom interferometry have led to atomic inertial sensors with extremely high sensitivity. Their performances are for the moment limited by the ground vibrations, the impact of which is exacerbated by the sequential operation, resulting in aliasing and dead time. We discuss several experiments performed at LNE-SYRTE in order to reduce these problems and achieve the intrinsic limit of atomic inertial sensors. These techniques have resulted in transportable and high-performance instruments that participate in gravity measurements, and pave the way to applications in inertial navigation.Comment: 7 pages, 5 figure

    Pumping dynamics of cold-atom experiments in a single vacuum chamber

    Get PDF
    A nonlinear analytical model for the pressure dynamics in a vacuum chamber, pumped with a sputter ion pump (SIP), is proposed, discussed and experimentally evaluated. The model describes the physics of the pumping mechanism of SIPs in the context of a cold-atom experiment. By using this model, we fit pump-down curves of our vacuum system to extract the relevant physical parameters characterizing its pressure dynamics. The aim of this investigation is the optimization of cold-atom experiments in terms of reducing the dead time for quantum sensing using atom interferometry. We develop a calibration method to improve the precision in pressure measurements via the ion current in SIPs. Our method is based on a careful analysis of the gas conductance and pumping in order to reliably link the pressure readings at the SIP with the actual pressure in the vacuum (science) chamber. Our results are in agreement with the existence of essentially two pumping regimes determined by the pressure level in the system. In particular, we find our results in agreement with the well-known fact that for a given applied voltage, at low pressures, the discharge current efficiently sputters pumping material from the pump’s electrodes. This process sets the leading pumping mechanism in this limit. At high pressures, the discharge current drops and the pumping is mainly performed by the already sputtered material

    ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz3.3{\times}1{0}^{-22}/\sqrt{\text{Hz}} at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology.AB acknowledges support from the ANR (project EOSBECMR), IdEx Bordeaux—LAPHIA (project OE-TWR), theQuantERA ERA-NET (project TAIOL) and the Aquitaine Region (projets IASIG3D and USOFF).XZ thanks the China Scholarships Council (No. 201806010364) program for financial support. JJ thanks ‘AssociationNationale de la Recherche et de la Technologie’ for financial support (No. 2018/1565).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grants No. DLR∌50WM1641 (PRIMUS-III), 50WM1952 (QUANTUS-V-Fallturm), and 50WP1700 (BECCAL), 50WM1861 (CAL), 50WM2060 (CARIOQA) as well as 50RK1957 (QGYRO)SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by ‘NiedersĂ€chsisches Vorab’ through the ‘Quantum- and Nano-Metrology (QUANOMET)’ initiative within the project QT3, and through ‘Förderung von Wissenschaft und Technik in Forschung und Lehre’ for the initial funding of research in the new DLR-SI Institute, the CRC 1227 DQ-mat within the projects A05 and B07DS gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875.RG acknowledges Ville de Paris (Emergence programme HSENS-MWGRAV), ANR (project PIMAI) and the Fundamental Physics and Gravitational Waves (PhyFOG) programme of Observatoire de Paris for support. We also acknowledge networking support by the COST actions GWverse CA16104 and AtomQT CA16221 (Horizon 2020 Framework Programme of the European Union).The work was also supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos.∌50WM1556, 50WM1956 and 50WP1706 as well as through the DLR Institutes DLR-SI and DLR-QT.PA-S, MN, and CFS acknowledge support from contracts ESP2015-67234-P and ESP2017-90084-P from the Ministry of Economy and Business of Spain (MINECO), and from contract 2017-SGR-1469 from AGAUR (Catalan government).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (B2) andCRC1227 ‘DQ-mat’ within projects A05, B07 and B09.LAS thanks Sorbonne UniversitĂ©s (Emergence project LORINVACC) and Conseil Scientifique de l'Observatoire de Paris for funding.This work was realized with the financial support of the French State through the ‘Agence Nationale de la Recherche’ (ANR) in the frame of the ‘MRSEI’ program (Pre-ELGAR ANR-17-MRS5-0004-01) and the ‘Investissement d'Avenir’ program (Equipex MIGA: ANR-11-EQPX-0028, IdEx Bordeaux—LAPHIA: ANR-10-IDEX-03-02).Peer Reviewe

    Evaporative cooling in a radio-frequency trap

    No full text
    International audienc

    Mechanical stress reduction in PECVD a-Si : H thin films

    No full text
    International audienc
    • 

    corecore